Complex Time to Event Data: Design and Statistical Inference for the INVESTED Trial

KyungMann Kim, Ph.D.
University of Wisconsin-Madison
kyungmann.kim@wisc.edu
Outline

• INVESTED Trial
 – Overview
 – Organizations
 – DCC responsibilities

• Complex time to event data
 – Design
 – Statistical Inferences
 • Non-randomized cohorts
 • Mediation analysis
INVESTED Trial

• *INfluenza Vaccine to Effectively Stop cardioThoracic Events and Decompensated heart failure (INVESTED)* trial

• ClinicalTrials.gov Identifier: NCT02787044
INVESTED: Overview

- **Large, simple**, adequately powered, double-blind and **pragmatic** trial
- **Comparative effectiveness research**
- Assess whether high-dose trivalent influenza vaccine (HD TIV/IIV3-HD) compared with standard dose quadrivalent influenza vaccine (SD QIV/IIV4-SD) will reduce cardiopulmonary events including death and hospitalization
- **A high-risk cardiovascular population**
 - MI within a year
 - HF within two years
Impact of Influenza in US

- Approximately 36,000 influenza-associated deaths during each influenza season
- Over 200,000 influenza-related excess hospitalizations
- Several analyses have documented an association between acute respiratory infections and cardiovascular (CV) events

Thompson et al. JAMA. 2003;289:179-86
Thompson et al. JAMA. 2004;292:1333-40
Madjid et al. EHJ. 2007;28:1205-10
More Intensive Influenza Vaccine Reduces CV Events: Meta Analysis

<table>
<thead>
<tr>
<th>Study</th>
<th>High Dose Vaccine</th>
<th>Standard Vaccine</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
</tr>
<tr>
<td>Jackson</td>
<td>1</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>de Bruijn</td>
<td>2</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>Keitel</td>
<td>3</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>FEVER</td>
<td>2</td>
<td>133</td>
<td>1</td>
</tr>
<tr>
<td>Falsey</td>
<td>12</td>
<td>2573</td>
<td>7</td>
</tr>
<tr>
<td>Forrest</td>
<td>12</td>
<td>1508</td>
<td>12</td>
</tr>
<tr>
<td>DiazGranados</td>
<td>13</td>
<td>6108</td>
<td>15</td>
</tr>
<tr>
<td>Greenberg</td>
<td>46</td>
<td>15990</td>
<td>65</td>
</tr>
<tr>
<td>Total</td>
<td>91</td>
<td>26718</td>
<td>104</td>
</tr>
</tbody>
</table>

Test for Heterogeneity
14 September 2018 \(I^2 = 0\%
Overall P-Value = 0.03

High Dose Vaccine Better | Standard Vaccine Better

0.2 | 0.5 | 1 | 2 | 5

0.34% | 0.47%
High vs Standard Dose Influenza Vaccine RCT in Healthy Elderly Individuals

Features of the FLUZONE trial

• Design Hemagglutinin (HA) as influenza antigen
 – 1:1=IIV3-HD (60 µg HA/strain) : IIV3-SD (15 µg HA/strain)
 – Primary efficacy endpoint: Influenza-like illness 14 days after vaccination until the end of the influenza season
 – 30,000 to detect a relative efficacy of 30% with 1-β=0.8 at α=0.05 with an incidence of 2% for IIV3-SD

• Results: 09/06/11-05/31/13, 31,989
 – Year 1 (09/06/11-10/09/11): 14,500 new
 • H1N1, H3N2 (A/Victoria/210/2009) & B/Brisbane/60/2008
 – Year 2 (10/09/12-10/21/12): 17,489=7,645+9,844 new
 • 7,645 from year 1 re-randomized in year 2
 • H1N1, H3N2 (A/Victoria/210/2009) & B/Texas/6/2001
 – Relative efficacy: 24.2% reduction in the incidence of influenza-like illness (relative risk of 0.758)
• Influenza is associated with and may trigger cardiovascular events, and may lead to disease exacerbation, especially in immune compromised conditions such as heart failure (HF)
• Influenza vaccine provides cardiovascular benefit in a meta-analysis of vaccine trials
• High risk patients, including those with HF or recent acute coronary syndrome/myocardial infarction (MI), may derive greater benefit from vaccination
• Patient with heart failure exhibit reduced immune responses to influenza vaccination which can be overcome with a higher dose of influenza vaccine
• In several analyses, high dose vaccine is associated with reduction in CV events
• High dose vaccine is currently approved for healthy older adults only; CDC’s Advisory Committee on Immunization Practices does not preferentially recommend one vaccine formulation over another
INVESTED: Organization

Clinical Coordinating Center (BWH)

Data Coordinating Center (UW-Madison)

NHLBI

DSMB

Clinical Events Committee

Network-Based Trial Operations

Canada (U.Toronto) Consortium

VA Consortium

BWH/ Midwest
INVESTED CCC

• MPI: Orly Vardeny, U of Minnesota
 Scott Solomon, BWH
• Cooperative agreement: U01 HL130163
• Funding period: 02/15/16-01/31/21
• Responsibilities:
 – Study operations
 – Recruitment of investigators and sites
 – Human subject protection
 – Regulatory affairs
INVESTED DCC

• PI: KyungMann Kim, UW-Madison
• Cooperative agreement: U01 HL130204
• Funding period: 02/15/16-01/31/21
• Responsibilities:
 – Statistical methods
 – Data management
 – Quality control/assurance
 – Study monitoring
• Data management subcontract with Frontier Science
Scott D. Solomon, MD
Professor of Medicine
Harvard Medical School
(CCC Co-PI)

Jacob A. Udell, MD, MPH
Assistant Professor of Medicine
University of Toronto
Canadian Co-PI

Keipp Talbot, MD, MPH
Assistant Professor of Medicine
Vanderbilt University

Orly Vardeny, PharmD, MS
Assoc Prof of Pharmacy and Medicine
University of Wisconsin
(CCC Co-PI)

Michael Farkouh, MD, MSc
Professor of Medicine
University of Toronto
Canadian Co-PI

Allison McGeer, MD, MSc
Professor of Laboratory Medicine, Pathobiology, and Public Health Sciences
University of Toronto

KyungMann Kim, PhD
Professor of Biostatistics and Statistics
University of Wisconsin
(DCC-PI)

J. Michael Gaziano, MD, MPH
Professor of Medicine
Harvard Medical School
VA network PI

Adrian Hernandez, MD, MHS
Professor of Medicine
Duke University
PCORnet network lead

NIH Project Team

Lawton Cooper, MD, MPH, Program Officer
Rebecca Campo, PhD
Nicole Redmond, MD, PhD
Song Yang, PhD

Steering Committee Members:

Janet Wittes, PhD
Jonathan Temte, MD
Brian Claggett, PhD
Clyde Yancy, MD
Shaun Goodman, MD
Christopher Cannon, MD
Deepak Bhatt, MD
Pat Winokur, MD

Clinical Endpoint Committee:

Akshay Desai, MD, Chair
Peter Finn, MD
Jonathan Strongin, MD
DCC: IT Support

• Randomization system
• Treatment inventory utility
• Interface with eSOCDAT at CCC
 – Site management
 – Clinical events classification (soft adjudication)
DCC: Data Management

- Electronic Data Capture (EDC): OpenClinica
 - 21 CFR Part 11 compliant
 - Web-based data entry and management system
 - Audit trails
- Backend RDBMS: Ingres
 - Study database for statistical analysis and reporting
DCC: Quality Control

• Standard Operating Procedures (SOPs)
• Good Clinical Practice (ICH E6)
• Centralized risk-based monitoring
• Delinquency monitoring
• Data consistency and correctness
• Source data verification
 – Random sampling (5%)
 – Remote
• For-cause site visits if necessary
DCC: Quality Assurance

Quality Assurance Manager Oversees all QA activities

<table>
<thead>
<tr>
<th>Standard Operating Procedures</th>
<th>Monitoring Plans</th>
<th>Management Controls</th>
<th>GCDMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Corporate</td>
<td>• Study-specific quality monitoring plans specify deliverables and quality standards</td>
<td>• Organization steering and compliance committee gives general oversight and guidelines to all projects</td>
<td>• Frontier Science’s SOPs are based on GCDMP requirements</td>
</tr>
<tr>
<td>• Project-specific to ensure project-specific goals are achieved</td>
<td>• QA/QC plans go beyond monitoring plans, specifying quality review processes for individual data items</td>
<td>• Individual management groups are established based on project needs</td>
<td>• Routine annual review of all internal processes in the context of GCDMP ensures new and updated practices are compliant</td>
</tr>
<tr>
<td>• Annually reviewed and updated</td>
<td>• Data collection instruments include built-in data validation and quality control</td>
<td>• Independent software quality assurance department proactively audits software compliance</td>
<td></td>
</tr>
<tr>
<td>• Staff compliance monitored as part of employee annual reviews</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DCC: Study Monitoring

- Central remote monitoring
 - Enrollment by site and by network
 - Trial conduct and performance
- Source document verification of 5% random samples
 - Informed consent
 - Eligibility
- Safety reporting for suspected unexpected serious adverse reactions (SUSARs) to Health Canada
- Data entry and query resolution
- Lag based on study schedule
INfluenza Vaccine to Effectively Stop CardioThoracic Events and Decompensated Heart Failure in Patients with CVD (INVESTED)

Post-MI or HF Hospitalization

N = 9,300

RANDOMIZED 1:1 DOUBLE BLIND ANNUAL VACCINE STRATEGY

Following 3 times a year with annual re-vaccination to assigned strategy

Primary Endpoint: Composite of Death or Cardiopulmonary Hospitalization

High Dose Influenza Vaccine

Standard Dose Influenza Vaccine

All other CV Rx per treating MD

Duration

Three Influenza Seasons

N = 9,300
INVESTED Vaccines

• Inactivated influenza vaccine (IIV)
• Fluzone® donated by Sanofi
• **Standard dose quadrivalent influenza vaccine (IIV4-SD)**
 – Each at 15 µg hemagglutinin (HA)
 – Targets 4 strains:
 • A/H1N1, A/H3N2, B/Yamagata plus B/Victoria
 – Approved for 6 months of age and older
• **High dose trivalent influenza vaccine (IIV3-HD)**
 – Each at 60 µg HA
 – Targets 3 strains:
 • A/H1N1, A/H3N2, B/Yamagata
 – Approved for 65 years of age and older
• IND exemption from FDA
(Original) Design in Grant Proposal

- Enrollment during three influenza seasons (from September to January)
- Primary endpoint: Time to all-cause death or cardiopulmonary (CP) hospitalization
- Two-tailed log rank test at $\alpha=0.05$
- Effect size: 18% reduction, i.e. hazard ratio (HR)=0.82
- Control event rates: 9% in 1st season; 8% in 2nd; 7% in 3rd
- Follow up ≥ 6 months with 20% drop-out per year
- 9,300 pts (4,650 in 1st season; 3,100 in 2nd; 1,550 in 3rd)
- 1,088 primary endpoint events
- Power $1-\beta > 0.90$
- Two interim analyses using O’Brien-Fleming
gsSurv

- Sample size and power analysis for clinical trials with time to event endpoint
 - Lachin and Foulkes (1986)
 - Non-uniform entry, losses to follow-up, noncompliance
 - Non-constant event rates
- Group sequential trials with time to event endpoint
 - Kim and Tsiatis (1990)
- gsSurv by Keaven Anderson at Merck
 - Combines the flexibility of Lachin and Foulkes (1986) with the group sequential design of Kim and Tsiatis (1990)
 - Directly applied for design of INVESTED
gsSurv call and results

gsSurv(k=3, test.type=2, sfu="OF", lambdaC=- c(log(.91),log(.92),log(.93)), S=c(1,1), R=c(.5,.5,.5,.5,.5), gamma=c(3,0,2,0,1), hr=0.82, T=3, minfup=0.5, alpha=0.05, beta=0.1, sided=2, eta=0.2)

Time to event group sequential design with HR= 0.82
Equal randomization: ratio=1
Symmetric two-sided group sequential design with 90% power and 2.5% Type I Error.
Spending computations assume trial stops if a bound is crossed.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>N</th>
<th>Z</th>
<th>Nominal p</th>
<th>Spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>363</td>
<td>3.47</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>2</td>
<td>725</td>
<td>2.45</td>
<td>0.0071</td>
<td>0.0069</td>
</tr>
<tr>
<td>3</td>
<td>1088</td>
<td>2.00</td>
<td>0.0225</td>
<td>0.0178</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>0.0250</td>
<td></td>
</tr>
</tbody>
</table>

++ alpha spending: O'Brien-Fleming boundary
Complex Time to Event Data: Design/Statistical Inference Options

1. randomize once; first event counted; follow until end of study; analysis stratified by season (original ITT plan)

2. randomize once; first event counted (across seasons); follow until patient refuses vaccine; analysis stratified by season

3. randomize once; first event each year counted; follow until patient refuses vaccine; analysis stratified by season

4. randomize each year; first event each year gets counted; follow until patient refuses vaccine; analysis stratified by season
Revised Primary Endpoint

- Time to first occurrence of all-cause death (30%) or cardiopulmonary hospitalization (70%) within each season (from 14 days after vaccination until July 31)
- Except for death, CP hospitalizations will be counted for multiple vaccinations
- Examples (non-exclusive):

<table>
<thead>
<tr>
<th>Non-Fatal Events</th>
<th>Unplanned Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-fatal myocardial infarction</td>
<td>unplanned revascularizations</td>
</tr>
<tr>
<td>non-fatal stroke</td>
<td>arrhythmia</td>
</tr>
<tr>
<td>non-fatal cardiac arrest</td>
<td>pulmonary embolism</td>
</tr>
<tr>
<td>unstable angina</td>
<td>respiratory tract infections</td>
</tr>
<tr>
<td>incident or acute heart failure</td>
<td>pulmonary disease exacerbations</td>
</tr>
</tbody>
</table>
Secondary Endpoints

• (Original) Primary endpoint over the entire study (ITT)
• Recurrent CP hospitalizations subject to competing risk of death
• Primary endpoints only during “influenza season” (until end April-mid May)
• Individual components of the primary endpoint
• Other secondary endpoints representing composites of key CV and pulmonary events
Sample Size/Power Analysis

- Effect size: 18% reduction or hazard ratio (HR) 0.82
- Control event rates: 9% in 1st season; 8% in 2nd; 7% in 3rd
- 30% : 70% = death : CP hospitalization
- 30% not returning for subsequent years’ vaccinations
- Primary endpoint events: 279, 448 and 549 in 1st, 2nd, 3rd
- A total of 1,276 events over three seasons
- Power = 0.94 to detect HR = 0.82 at a two-sided $\alpha = 0.05$ log-rank test
- Two interim analysis using O’Brien-Fleming
Analysis of Efficacy Endpoints

- Subject’s clock for each influenza season resets 2 weeks after influenza vaccination
 - Primary endpoint counted until July 31 of each season
 - Each subject can contribute primary endpoint events in more than one influenza season (considered independent?)

- Primary efficacy analysis (**Specific Aim 1**)
 - Log-rank test stratified by season, unadjusted estimate of HR
 - Cox proportional hazards regression, adjusted estimate of HR

- Secondary efficacy similar to primary efficacy
 - Recurrent events analysis subject to competing risk of death

- Additional efficacy analysis (asked by influenza experts)
 - In season analysis (events counted until end April-mid May)
Randomized vs Non-randomized

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-2017</td>
<td>494</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017-2018</td>
<td></td>
<td>2,502</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018-2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019-2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Statistical Analysis Plan

• No re-randomization
 – As a strategy trial
 – To avoid dilution of effect due to possible carry-over effects

• After the initial randomization, in subsequent seasons
 – Bias due to differential survivorship
 – Bias due to differential drop-out
 – Two treatment groups no longer comparable
 – Randomization analysis maybe problematic

• Solutions: Causal inference?
 – Principal stratification
 – Matching based on propensity score
 – Inverse probability of treatment weighting
Statistical Analysis Plan

- **Causal inference**
 - Complex composite endpoint
 - Recurrent events subject to competing risk of death

- **Potential methodology research topics**

- **Lu Mao, Co-I**

- **Potential dissertation topics**
Analysis of Immune Responses

• Analysis of Immune Responses in HA inhibition (HAI)
 – T-test for geometric mean titers (GMTs)
 – Chi-square tests for seroconversion (SC) and seroprotection (SP)
 – Log-rank test of primary endpoint by status of SC and SP
 – Cox regression model with GMT as a model term, while adjusting for treatment, SC and SP and the interaction between treatment and match for circulating B (Victoria)-lineage to estimate HR for each doubling of GMT

• Association between immune response and primary endpoint (Specific Aim 2)
Association between Immune Response and Clinical outcomes

• Gilbert et al. (2014)

• Association between fold rise in varicella zoster virus (VZV) antibody titers and protection from herpes zoster, i.e. shingles
 – Zostavax Efficacy and Safety Trial (ZEST)
 – Correlate of Protection (CoP): Fold rise in antibody titer level

• No VZV antibody titers measured from placebo

• Validation of CoP as a surrogate endpoint
 – Principal stratification or vaccine efficacy (VE) framework
Figure 3. A and B, Estimated vaccine efficacy curves across levels of vaccine-induced fold rise in titers from baseline to week 6, using the probit estimated likelihood method [27] and the Weibull estimated likelihood method [35], respectively, with 95% bootstrap confidence intervals. The lower x-axis indicates the multiplicative fold rise in titers. C, Estimated VEs with 95% bootstrap confidence intervals for subgroups defined by the lower, middle, and upper tertiles of vaccine-induced fold rise in titers, using the nonparametric estimated likelihood method [27].
Other Challenges

• Competing Risks
 – Non-terminating individual components of the composite endpoint analyzed using methods for competing risks
 – Analysis of the rate of hospitalization with death as a competing risk

• Mediation analysis of immune response
 – No available method for Cox proportional hazards model

• Missing Data
 – Guided by the National Research Council report (2010)
Mediation Analysis

Fig. 2 Direct and Indirect Effects of Influenza Vaccination with Immune Modulation

- Influenza Vaccination
- Change in Antibody Titer
- Clinical Outcomes
- Specific Aim 1
- Specific Aim 2
Mediation Analysis

- Baron and Kenny (1986)
- Structural equation modeling (SEM)
- Most available methods deal with linear models
- Time to event data requires intrinsically non-linear models for hazard function or some transformation of it
- Wesley Chang’s thesis topic
 - Linear transformation models (Cheng et al., 1995)
Efficacy Stopping Rules

- For efficacy comparisons
- At the end of each influenza season (calendar-driven) based on the design (information-driven)
- Lan-DeMets type I error spending function à la O’Brien-Fleming group sequential method

<table>
<thead>
<tr>
<th>Analysis at the end of influenza season</th>
<th>Information time</th>
<th>Number of primary endpoint events</th>
<th>Upper efficacy boundary</th>
<th>Nominal p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>0.219</td>
<td>279</td>
<td>4.65</td>
<td><0.0001</td>
</tr>
<tr>
<td>2nd</td>
<td>0.570</td>
<td>727</td>
<td>2.75</td>
<td>0.0060</td>
</tr>
<tr>
<td>3rd</td>
<td>1.000</td>
<td>1,276</td>
<td>1.98</td>
<td>0.0481</td>
</tr>
</tbody>
</table>
Efficacy Stopping Rules: Calendar/Duration paradigm

- For efficacy comparisons
- At the end of each influenza season based on observed
- Lan-DeMets type I error spending function à la O’Brien-Fleming group sequential method
- Observed so far grossly different from expected based on the design
- How to determine the group sequential boundary
- Information vs duration paradigm
 - Lan and DeMets (1989)
 - Lan and Lachin (1990)
 - Kim et al. (1995)
Discussion

• INVESTED trial
 – Large, simple trial
 – Pragmatic trial
 – Comparative effectiveness research

• Challenging statistical inference issues
 – Recurrent events subject to competing risk of death
 – Causal inference due to non-random cohorts after the 1st vaccination
 – Medication analysis for time to event data with immune responses as mediator
 – Interim analysis and group sequential boundary
References

- Anderson K. https://cran.r-project.org/web/packages/gsDesign/index.html